Многодисциплинарное проектирование осецентробежного компрессора

Старцев А.Н., Стешаков Е.Г., Якушев Д.А.

Центральный институт авиационного моторостроения им. П.И. Баранова, г. Москва e-mail: steshakov@ciam.ru

Выполнено проектирование аэродинамики и конструкции роторов семейства осецентробежных компрессоров со степенью повышения полного давления π^{*} = 14...25 для современных и перспективных малоразмерных газотурбинных двигателей. Рассмотрены конфигурации компрессоров с 3–5 осевыми ступенями и замыкающей центробежной ступенью.

Ключевые слова: осецентробежный компрессор, степень повышения полного давления, адиабатический КПД, напряженно-деформированное состояние.

Multidisciplinary design of axial-centrifugal compressor

Startsev A.N., Steshakov Eu.G., Yakushev D.A. CIAM. Moscow

Aerodynamic and structural design of a family of axial-centrifugal compressors with total pressure ratio $\pi^* = 14...25$ is discussed. Such compressors are actual for modern small turbo-shaft engines. Examined compressors have 3–5 axial stages and one rear centrifugal stage.

Keywords: axial-centrifugal compressor, total pressure ratio, compressor efficiency, structural analysis.

Введение

В качестве перспективных компрессоров малоразмерных газотурбинных двигателей (МГТД) среднего класса мощности N = 1400...3500 л.с. предлагается использовать осецентробежные компрессоры, в которых удается соединить аэродинамические преимущества осевых ступеней, имеющих высокий КПД, и центробежных ступеней, расширяющих диапазон устойчивой работы.

Перераспределение подводимой работы в пользу осевой части компрессора позволяет получить высокий КПД в диапазоне степени повышения давления $\pi^* = 14...25$. Например, осецентробежный компрессор семейства двигателей Т700 фирмы General Electric обеспечивает $\pi^* = 17$ и $\eta^*_{ad} \ge 0.81$ при приведенном расходе воздуха $G_{\text{прив}} = 4.75$ кг/с [1].

Таким образом, несмотря на более сложную конструкцию, осецентробежные компрессоры будут наилучшим решением для МГТД с высокими параметрами термодинамического цикла.

Ниже приведены параметры четырех осецентробежных компрессоров в зависимости от мощности *N* двигателя (табл. 1). Семейство осецентробежных компрессоров, удовлетворяющее основным требованиям к аэродинамическим параметрам, показано на рис. 1.

Задачи современного аэродинамического проектирования осевого и центробежного компрессоров представлены в монографии [2]. К их числу относятся увеличение оборотов компрессора для снижения аэродинамической нагруженности рабочих колес (РК) и способы достижения высокого уровня КПД.

Аэродинамическое проектирование осецентробежных компрессоров освещено в статьях [3, 4]. Одной из затронутых проблем было распределение подводимой к воздуху работы между осевой частью компрессора и центробежной ступенью в зависимости от числа осевых ступеней и степени повышения полного давления.

Таблица 1. Параметры ос	ецентробежных компрессоров
-------------------------	----------------------------

Параметр	3 ос + 1 цб	4 ос + 1 цб	5 ос + 1 цб	5 ос + 1 цб
<i>N</i> , л.с.	1400	2200	2600	3500
π^*	12,6	14	17	19
<i>G</i> _{прив} , кг/с	4,75	6,04	7,34	10,47

Рис. 1. Семейство осецентробежных компрессоров для турбовальных двигателей

Нагруженность центробежного рабочего колеса (ЦРК) обратно пропорциональна квадрату окружной скорости вращения задних кромок лопаток U_{2 ЦРК, которая определяется числом оборотов компрессора и радиусом расположения задних кромок.

Отличительной особенностью рассмотренных ниже осецентробежных компрессоров является высокий уровень окружной скорости и, следовательно, низкий уровень аэродинамической нагруженности, обеспечивающий большой запас устойчивой работы. Компрессоры спроектированы на одни и те же числа оборотов (для возможности сравнения), поэтому окружная скорость пропорциональна радиусу выхода из ЦРК. Соответственно, различные значения окружной скорости U_{21IPK} означают различие радиусов выхода из ЦРК.

При проектировании конструкции, как правило, стремятся минимизировать диаметр ЦРК на выходе, что позволяет понизить его вес и величину действующей на него осевой силы. Однако это приводит к уменьшению степени повышения полного давления в центробежной ступени. Для сохранения суммарной степени повышения давления компрессора может потребоваться увеличение числа осевых ступеней. Следует отметить, что такой подход способствует повышению КПД компрессора.

Проектирование осевой части компрессора

Приведенная окружная скорость на периферии РК первой ступени для рассматриваемых компрессоров составляет 493 м/с, что позволяет минимизировать габариты компрессора. Относительный диаметр втулки на входе в компрессор равен 0,534.

Осевые части компрессоров 3+1, 4+1 и 5+1 проектируются так, чтобы три входные осевые ступени были одинаковы. Тогда осевая часть компрессора 4+1 получается из осевой части компрессора 3+1 добавлением осевой ступени на выходе (и соответствующим смещением центробежной ступени). Это верно и для компрессора 5+1. Каждая добавленная ступень профилируется так, что дросселирует компрессор перед собой в ту же точку на характеристике, в которой он работал без добавленной ступени, т. е. четыре входные ступени осевой части компрессора 5+1 дают те же параметры, что и осевая часть компрессора 4+1. При этом три входные ступени осевой части компрессора 5+1 дают те же параметры, что и три входные ступени осевой части компрессора 4+1 или осевая часть компрессора 3+1.

Уровень окружной скорости достаточно высок, что позволяет выбрать осевую проточную часть компрессора с постоянным средним диаметром и при этом достичь высокой степени повышения давления при умеренном нагружении осевых ступеней. Относительный диаметр втулки на выходе из осевой части компрессора 5+1 равен 0,856. В табл. 2 приведены параметры осевой части компрессора 5+1.

Компрессоры проектируются с учетом существующего технологического уровня изготовления и сборки МГТД, принятого на предприятиях отрасли.

Таблица 2. Параметры осевой части компрессора 5+1

Параметр	Число ступеней				
Парамстр	3	4	5		
π^*	4,493	5,929	7,970		
η _{ад}	0,858	0,852	0,846		

При этом относительная величина радиального зазора в РК пятой осевой ступени может составлять до 1,6% высоты лопатки, что существенно снижает КПД осевой части компрессора (см. табл. 2).

Проектирование центробежной ступени

Замыкающая центробежная ступень компрессора служит дросселем для его осевой части, т. е. определяет рабочую точку осевой части. Для получения максимального КПД компрессора в целом необходимо спроектировать центробежную ступень так, чтобы КПД осевой части оказался максимальным на линии рабочих режимов компрессора.

Центробежная ступень существенно увеличивает осевую длину компрессора и определяет его радиальные размеры, а напряженно-деформированное состояние ЦРК ограничивает степень повышения полного давления.

Адиабатический КПД ЦРК зависит от числа Маха М потока в относительном движении, реализуемом на стороне разрежения лопатки, поэтому при профилировании ЦРК следует избегать появления сверхзвуковых зон.

Максимальное число М потока в абсолютном движении возникает на выходе из ЦРК. Чем больше радиус выхода, тем выше число М и значительнее потери полного давления в радиальном лопаточном диффузоре. Число М в абсолютном движении определяется также высотой лопатки на выходе из ЦРК. Однако основным критерием выбора высоты лопатки на выходе из ЦРК является угол потока на входе в лопаточный диффузор, который должен быть не более 67°. В этом случае в качестве средней линии аэродинамического профиля лопатки диффузора можно использовать логарифмическую спираль для устранения отрывов вязкого потока в межлопаточном канале.

Адиабатический КПД центробежной ступени рассмотренных компрессоров лежит в диапазоне 0,795...0,800. Относительная величина зазора между корпусом и периферией ЦРК на выходе составляет 4%.

Окружная скорость на выходе из ЦРК не превышает 594 м/с. В компрессоре 5+1 при окружной скорости 594 м/с в точке характеристики, соответствующей потере устойчивости ($\pi^* = 27,5$), реализуется температура 830 К (560°С). Расчет напряженно-деформированного состояния ротора компрессора 5+1 показал, что такая окружная скорость допустима при столь высокой температуре потока.

Компрессоры 3+1

В компрессоре 3+1, состоящем из трех осевых и замыкающей центробежной ступеней, степень повышения давления $\pi^* = 16$ удается получить только при окружной скорости $U_{2 \text{LIPK}} = 594$ м/с.

При аэродинамическом проектировании рассмотрены два варианта ЦРК: с переходным каналом между осевой частью и центробежной ступенью и без переходного канала. На рис. 2 показаны проточные части обоих компрессоров. Введение переходного канала с понижением втулки существенно увеличивает осевую длину компрессора.

Параметры осевой части, центробежной ступени и всего компрессора 3+1 приведены в табл. 3.

Применение переходного канала с понижением втулки позволяет повысить КПД центробежной ступени вследствие увеличения КПД ЦРК. В компрессоре 3+1 число М потока на выходе из осевой части компрессора достаточно велико. В результате в межлопаточном канале на входе в ЦРК без переходного канала образуются зоны сверхзвукового потока (в относительном движении). При введении переходного канала вход в ЦРК оказывается на меньшем радиусе, окружная скорость лопатки РК падает и поток становится дозвуковым. Это приводит к снижению диффузорности потока и повышению КПД рабочего колеса и центробежной ступени в целом.

Отметим, что в компрессорах 4+1 и 5+1 скорость потока на выходе из осевой части оказывается настолько низкой, что сверхзвуковая скорость (в относительном движении) в ЦРК не возникает. Поэтому с точки зрения аэродинамики введение переходного канала в конструкцию компрессоров 4+1 и 5+1 излишне, но переходный канал с понижением втулки может понадобиться для ослабления конструктивных требований по овализации корпуса и соосности ротора и корпуса.

Рис. 2. Проточные части компрессоров 3+1: 1 – без переходного канала; 2 – с переходным каналом

Таблица 3.	Параметры	компрессора З	3+1 (U ₂₁₁	_{PK} = 594 м/с)
------------	-----------	---------------	-----------------------	--------------------------

	-	-		
Параметр	Осевая часть	Центробежная ступень	Компрессор	
	ЦРК без 1	переходного канала	!	
π^*	4,840	3,250	15,750	
η^*_{ad}	0,850	0,760	0,775	
ЦРК с переходным каналом				
π^{*}	4,760	3,300	15,720	
$\eta^*_{a a d}$	0,854	0,797	0,797	

Напряженно-деформированное состояние ротора компрессора 3+1

Напряженно-деформированное состояние ротора компрессора 3+1 исследовано для трех вариантов переходного канала (рис. 3). Расчеты выполнены в осесимметричной постановке с использованием метода конечных элементов и термомеханической модели для оценки теплового состояния по методикам [5].

Рис. 3. Распределение эквивалентных напряжений (МПа) в роторе для вариантов 1 (*a*), 2 (*б*) и 3 (*в*) переходного канала в компрессоре 3+1, *U*_{2ЦРК} = 594 м/с (см. табл. 4)

Леталь		Вариант	
дстав	1	2	3
Диск ЦРК	725	659	632
Диск PK 3-й ступени	538	517	501

Таблица 4.	Максимальное	эквивалентное	напряжение,	МΠа

Таблица	5.	Macca	ротора,	КΓ	
---------	----	-------	---------	----	--

Потали		Вариант	
деталь	1	2	3
Осевая часть ротора	8,3	8,7	8,5
ЦРК	15,8	12,9	12,8
Ротор	24,1	21,6	21,3

Оценка влияния диаметра втулки на входе в ЦРК (при сохранении общей степени повышения полного давления в компрессоре) на напряжения в диске и зазоры между лопатками ротора и корпусом проведена при наиболее благоприятной схеме управления тепловым состоянием конструкции ротора.

При введении переходного канала с понижением втулки напряженно-деформированное состояние диска ЦРК из титанового сплава значительно улучшается (табл. 4). Для конструкции с наименьшим диаметром втулки на входе в ЦРК (вариант 3) эквивалентные напряжения в ступице диска снижаются на 13%. Уменьшение размеров диска ЦРК (при сохранении его тыльной стороны) приводит также к снижению массы ротора на 12% (табл. 5); меньший диаметр втулки на входе позволяет уменьшить зазор между рабочими лопатками и корпусом на выходе из ЦРК на 15%.

Компрессоры 4+1

В компрессоре 4+1, состоящем из четырех осевых и замыкающей центробежной ступеней, степень повышения давления $\pi^* = 16$ удается получить при окружной скорости $U_{2 \text{ЦРК}} = 554$ м/с. Поэтому можно сравнить аэродинамические параметры компрессора 4+1 и компрессора 3+1 с переходным каналом. Проточные части обоих компрессоров показаны на рис. 4.

Параметры осевой части, центробежной ступени и всего компрессора 4+1 приведены в табл. 6.

При сравнении данных табл. 3 и табл. 6 можно сделать вывод, что добавление четвертой осевой ступени понижает КПД осевой части. В то же время уменьшение $U_{2\text{ЦРK}}$ на 40 м/с повышает КПД центробежной ступени. Перераспределение работы между осевой частью и центробежной ступенью увеличивает вклад в КПД от осевой части. В целом КПД компрессора 4+1 получился выше КПД компрессора 3+1.

Потенциал роста степени повышения полного давления в компрессоре 4+1 продемонстрирован путем использования ЦРК с *U*_{211PK} = 594 м/с (см. табл. 6).

Отметим, что КПД компрессора 4+1 с повышенной $U_{2 \amalg PK}$ практически совпадает с КПД компрессора 3+1 с переходным каналом. Таким образом, добавление четвертой осевой ступени не снижает КПД компрессора и при этом значительно повышает давление на выходе.

Компрессоры 5+1

В компрессоре 5+1 можно получить степень повышения давления $\pi^* = 21$ при $U_{2 \text{ЦРК}} = 554$ м/с и $\pi^* = 25$ при $U_{2 \text{ЦРК}} = 594$ м/с (табл. 7).

Сравнение данных табл. 6 и табл. 7 (для компрессоров 4+1 и 5+1, обеспечивающих почти одинаковое повышение полного давления) показывает, что добавление пятой осевой ступени не снижает КПД компрессора вследствие перераспределения работы между осевой частью компрессора и его центробежной ступенью. Сравнение проточной части компрессоров 4+1 и 5+1 представлено на рис. 5.

Рис. 4. Проточные части компрессоров: 1 – 4+1, U_{2ЦРК} = 554 м/с; 2 – 3+1 с переходным каналом, U_{2ЦРК} = 594 м/с

Таблица 6. Параметры компрессора 4+1

Параметр	Осевая часть	Центробежная ступень	Компрессор	
	U_{21}	_{ЦРК} =554 м/с		
π^{*}	6,210	2,630	16,330	
η^*_{ad}	0,848	0,808	0,805	
U _{2ЦРК} =594 м/с				
π^*	6,010	3,350	20,120	
η _{ад}	0,855	0,798	0,798	

Рис. 5. Проточные части компрессоров: 1 – 4+1, U_{2ШРК} = 594 м/с; 2 – 5+1, U_{2ШРК} = 554 м/с

Габлица 7	Параметр	ы компрессора	5+1
-----------	----------	---------------	-----

Осевая часть	Центробежная ступень	Компрессор		
U_{2I}	_{ЦРК} =554 м/с			
7,770	2,681	20,840		
0,845	0,795	0,797		
U _{2ЦРК} = 594 м/с				
7,970	3,125	24,920		
0,846	0,796	0,794		
	Осевая часть <i>U</i> ₂₁ 7,770 0,845 <i>U</i> ₂₁ 7,970 0,846	Осевая часть Центробежная ступень U2LIPK = 554 м/с 7,770 2,681 0,845 0,795 U2LIPK = 594 м/с 7,970 3,125 0,846 0,796		

Максимальные параметры дает компрессор 5+1 с повышенной окружной скоростью $U_{24PK} = 594$ м/с (табл. 7). Параметры рассматриваемого компрессора 5+1 ограничены прочностными свойствами жаропрочного титанового сплава, примененного для ЦРК.

Напряженно-деформированное состояние диска ЦРК компрессора 5+1

Для оценки реализуемости проекта компрессора 5+1 проведен анализ напряженно-деформированного состояния ЦРК для компрессоров со степенью повышения давления $\pi^* = 21 (U_{2 \text{ЦРК}} = 554 \text{ м/с}) \text{ и } \pi^* = 25 (U_{2 \text{ЦРК}} = 594 \text{ м/с}).$ Сравнение результатов расчетов показало, что применение ЦРК с различной окружной скоростью $U_{2 \text{ЦРК}}$, т. е. с различным радиусом выхода из ЦРК, не приводит к существенному изменению напряжений в ступице диска.

Осевое перемещение периферии ЦРК вследствие изгибной деформации диска и лопаток показано на рис. 6, где представлены контур исходной формы ЦРК и распределение осевых перемещений на деформированной форме с масштабом деформаций 10 (положительные перемещения – влево). Величина осевого перемещения во многом определяет изменение зазора между рабочими лопатками и корпусом на выходе из ЦРК, где относительная величина зазора является наибольшей.

Рис. 6. Распределение осевых перемещений (мм) для трех вариантов ЦРК компрессора 5+1 (масштаб деформаций 10): *a* – вариант 1 (π^* = 25, U_{2ЦРК} = 594 м/с); *б* – вариант 2 (π^* = 21, U_{2ЦРК} = 554 м/с); *в* – вариант 3 (π^* = 25, U_{2ЦРК} = 594 м/с)

Для компрессора 5+1 с окружной скоростью $U_{2\text{ЦРК}} = 594 \text{ м/с}$ (вариант 1) осевое перемещение периферии ЦРК составляет 0,64 мм. Для конструкции ЦРК с окружной скоростью $U_{2\text{ЦРК}} = 554 \text{ м/с}$ (вариант 2) осевое перемещение периферии ЦРК уменьшается до 0,13 мм, что позволяет значительно легче обеспечить приемлемый уровень изменения зазора на выходе из ЦРК. При этом масса ЦРК варианта 2 меньше на 3%. Повышение жесткости диска ЦРК с $U_{2\text{ЦРК}} = 594 \text{ м/c}$ (вариант 3) путем изменения его формы позволяет уменьшить осевое перемещение на выходе ЦРК до 0,01 мм при увеличении массы на 27%.

Заключение

Исследованы малоразмерные многоступенчатые компрессоры в конфигурациях от трех до пяти осевых ступеней с замыкающей центробежной ступенью.

Приведенный массовый расход воздуха компрессоров изменяется в пределах $G_{\rm прив} = 4,75...11$ кг/с, степень повышения полного давления $\pi^* = 16...25$, КПД $\eta_{an}^* \ge 0,8$. Указанные параметры соответствуют современному мировому уровню для малоразмерных осецентробежных компрессоров.

Показана практическая реализуемость осецентробежных компрессоров в широком диапазоне степени повышения давления и расхода, обеспечивающих требуемый уровень КПД.

Определены оптимальные конфигурации осецентробежных компрессоров и проработаны их конструкции для дальнейшего изготовления и экспериментальной отработки на стенде УК-2 ЦИАМа.

Необходимо отметить, что данные компрессоры создавались под технические задания (а иногда и по прямому запросу) конструкторских бюро России. Иными словами, компрессоры, подобные представленным в статье, могут стать составной частью существующих авиадвигателей (или их перспективных вариантов).

Авторы надеются, что публикация этой статьи простимулирует интерес конструкторских бюро, тем более что дополнительно проведенные исследования показали достижимость уровня КПД $\eta_{ad}^* \ge 0,82$ при существующем технологическом уровне изготовления и сборки.

Литература

- 1. Miste G.A., Benini E. Performance of a Turboshaft Engine for Helicopter Applications Operating at Variable Shaft Speed // Proceedings of the ASME 2012 Gas Turbine India Conference, paper GTINDIA2012-9505, 2012. 15 p.
- 2. Старцев Н.И. Конструкция и проектирование авиационных газотурбинных двигателей и приводов энергетических установок. Кн. 1. М.: Двигатель, 2018. 400 с.
- 3. Startsev A., Fokin Yu., Steshakov Eu. CFD Design and Analysis of a Compact Single-Spool Compressor for a Heavy Transport Helicopter's Powerplant // ICAS2014 Proceedings, paper ICAS2014-0928, 2014. 8 p.
- Startsev A.N., Temis Yu.M., Steshakov Eu.G., Yakushev D.A. Multi-Disciplinary Design of High-Speed Compressors for Prospective Turbo-Shaft Engine // ICAS2016 Proceedings, paper ICAS2016-0481, 2016. 10 p.
- Темис Ю.М., Селиванов А.В. Моделирование напряженно-деформированного состояния, прочности и долговечности деталей и узлов // Машиностроение. Энциклопедия. Т. IV-21. Авиационные двигатели. М.: Машиностроение, 2010. С. 502–528.

References

- 1. Miste G.A., Benini E. Performance of a Turboshaft Engine for Helicopter Applications Operating at Variable Shaft Speed // Proceedings of the ASME 2012 Gas Turbine India Conference, paper GTINDIA2012-9505, 2012. 15 p.
- Startsev N.I. Konstruktsiia i proektirovanie aviatsionnykh gazoturbinnykh dvigatelei i privodov energeticheskikh ustanovok [Structure and design of aviation gas turbine engines and gas turbine units]. Book 1. Moscow: Dvigatel', 2018. 400 p.
- 3. Startsev A., Fokin Yu., Steshakov Eu. CFD Design and Analysis of a Compact Single-Spool Compressor for a Heavy Transport Helicopter's Powerplant // ICAS2014 Proceedings, paper ICAS2014-0928, 2014. 8 p.
- Startsev A.N., Temis Yu.M., Steshakov Eu.G., Yakushev D.A. Multi-Disciplinary Design of High-Speed Compressors for Prospective Turbo-Shaft Engine // ICAS2016 Proceedings, paper ICAS2016-0481, 2016. 10 p.
- Temis Iu.M., Selivanov A.V. Modelirovanie napriazhenno-deformirovannogo sostoianiia, prochnosti i dolgovechnosti detalei i uzlov [Modeling of thermal-stress state, strength and durability of engine parts]. Mashinostroenie. Entsiklopediia. Vol. IV-21. Aviatsionnye dvigateli. Moscow: Mashinostroenie, 2010. P. 502–528.