# Определение упругих постоянных для расчета остаточных напряжений по результатам измерений рентгеновским методом

#### Розанов М.А.

Центральный институт авиационного моторостроения им. П.И. Баранова, г. Москва e-mail: rozanov@rtc.ciam.ru

Рассмотрена задача определения упругих постоянных для жаропрочных никелевых сплавов с целью последующего расчета величин остаточных напряжений по результатам измерений рентгеновским методом. По результатам испытаний (на одноосное растяжение с определением модуля упругости при температуре 20°C) образцов с монокристаллической структурой трех аксиальных ориентаций [001], [011], [111] рассчитаны величины упругих податливостей и определены рентгеновские упругие постоянные для сплава ЖСЗ6.

**Ключевые слова:** остаточные напряжения, рентгеноструктурный анализ, упругая податливость, рентгеновские упругие постоянные, монокристаллический никелевый сплав.

# Determination of the elastic constants for the residual stresses calculation from the X-ray method measurement results

**Rosanov M.A.** *CIAM, Moscow* 

A task of determination of elastic constants used for calculating the magnitude of residual stress measured by X-ray method has been evaluated for nickel based super alloys. Values of elastic response and X-ray elastic constants were calculated by using experimental data obtained by testing specimens with monocrystalline structure of three axial orientations [001], [011], [111]. Testing was done for uniaxial stretching with determination of elastic module at a temperature of 20°C.

**Keywords:** residual stress, X-ray analysis, elastic response, X-ray elastic constants, monocrystalline nickel based super alloy.

#### Введение

В монографии И.А. Биргера [1] подробно изучено состояние вопроса о роли остаточных напряжений, приведены примеры расчета их величины и методы измерения, соответствующие уровню технического развития того времени. Теория и основные формулы, изложенные в монографии, сохранили свою актуальность и поныне, но уровень измерительной техники изменился кардинально. В настоящее время в мире изготавливаются роботизированные аппараты для определения остаточных напряжений методом рентгеноструктурного анализа, обладающие широкими возможностями относительно съемки в труднодоступных местах и чувствительности регистрирующих устройств. Эти аппараты решили вопрос быстродействия, считавшийся одним из камней преткновения при использовании этого метода.

В заключении главы об измерении остаточных напряжений рентгеновским методом Исаак Аронович написал: «Два основных вопроса нуждаются в дальнейшем исследовании: определение действительных значений упругих постоянных при осреднении деформации различных кристаллов и учет пластических деформаций». Рассмотрению первого основного вопроса посвящена эта статья. Неправильный выбор упругих постоянных при вычислении значений остаточных напряжений по результатам рентгенодифракционного анализа может привести к ошибкам до 40% от истинной величины [2].

#### Рентгенодифракционный метод определения остаточных напряжений

Рентгенографический метод определения макронапряжений (напряжений, подчиняющихся закону Гука и уравновешенных в объеме всего изделия или большей его части) основан на точном измерении периодов решетки. Так как остаточные напряжения характеризуются однородным сжатием или растяжением решетки (деформацией в упругой области), то они приводят к однородному изменению межплоскостных расстояний на величину  $\Delta d_{hkl}$ , и, следовательно, к смещению рентгеновской линии на угол  $\Delta \theta_{hkl}$ . Величина этого смещения определяется при дифференцировании левой части уравнения Вульфа – Брэггов [3]:

 $2d\sin\theta = N\lambda$ ,

где d – межплоскостное расстояние;  $\theta$  – угол падения рентгеновских лучей; N – целое число (порядок отражения);  $\lambda$  – длина волны характеристического рентгеновского излучения.

Основой рентгеноструктурного метода определения макронапряжений является факт, что все атомные плоскости во всех кристаллитах материала, одинаково ориентированные по отношению к действующим упругим силам, однородно меняют свои межплоскостные расстояния, т.е. отношение  $\Delta d/d$  остается постоянным по величине и по знаку [4]. Это означает, что согласно формуле Вульфа – Брэггов увеличение или уменышение величины межплоскостных расстояний приведет к уменьшению или увеличению угла  $\theta$  и повлечет



**Рис. 1.** Схема отражения рентгеновских лучей от различно ориентированных кристаллов при съемке методом  $\sin^2 \psi$ : 1 – падающий луч; 2 – отраженный луч;  $N_0$  – нормаль к поверхности образца;  $N_{hkl}$  – нормаль к отражающим плоскостям (*hkl*);  $\psi$  – угол между нормалями  $N_0$  и  $N_{hkl}$ 



Рис. 2. Эллипсоид деформации двухосного напряженного состояния поверхности

за собой смещение измеряемой рентгеновской линии на рентгенограмме, полученной с образца, в котором наведены остаточные напряжения, по отношению к образцу в исходном состоянии. Для измерения остаточных напряжений нужно получить отражение от одних и тех же плоскостей (*hkl*), но расположенных под разными углами к действующим напряжениям, и, вследствие этого, имеющих разные значения величины межплоскостных расстояний (рис. 1).

Угол между падающим рентгеновским лучом и нормалью к поверхности съемки обозначается ψ, угол в азимутальном направлении обозначается φ (рис. 2).

Если измерено расстояние между кристаллографическими плоскостями *d*, то, зная величину этого расстояния *d*<sub>0</sub> при отсутствии напряжений, можно вычислить деформацию кристаллической решетки

$$\varepsilon = (d - d_0) / d_0.$$

Эту деформацию при некотором выборе значений упругих постоянных материала можно отождествить с обычной (макроскопической) деформацией.

Принимая для простоты обычные значения упругих постоянных, получим:

$$\varepsilon = (-\nu/E)(\sigma_1 + \sigma_2),$$

выражение

где <br/> E-модуль упругости; <br/>  $\nu-$ коэффициент Пуассона. Таким образом, при съемке пр<br/>и $\psi=0$ справедливо

$$\sigma_1 + \sigma_2 = -E(d - d_0) / v d_0.$$

При рентгенографическом измерении напряжений измеренные деформации решетки идентичны деформациям, определяемым на основании связи тензоров напряжения и деформации из линейной теории упругости.

Напряженное состояние образца определяется тремя главными нормальными напряжениями  $\sigma_1$ ,  $\sigma_2$  и  $\sigma_3$ . Направление  $\sigma_3$  перпендикулярно поверхности образца, а  $\sigma_1$  и  $\sigma_2$  действуют в плоскости образца. Рентгеновские лучи проникают в образец на глубину порядка десяти микрометров, т.е. на малую часть его толщины, и с достаточной точностью можно считать, что в этом тонком поверхностном слое  $\sigma_3 \cong 0$ , а напряженное состояние определяется суммой главных напряжений  $\sigma_1 + \sigma_2$ , действующих в плоскости образца.

Тогда деформации в главных направлениях выражаются в виде:

$$\varepsilon_1 = (\sigma_1 - v\sigma_2)/E; \tag{1}$$

$$\varepsilon_2 = (\sigma_2 - \nu \sigma_1)/E; \qquad (2)$$

$$\varepsilon_3 = v(\sigma_1 + \sigma_2)/E. \tag{3}$$

Деформация в направлении, заданном углами  $\psi$  и  $\phi$ :

$$\varepsilon_{\varphi,\psi} = \varepsilon_1 l^2 + \varepsilon_2 m^2 + \varepsilon_3 n^2, \qquad (4)$$

где *l*, *m*, *n* – направляющие косинусы между выбранным направлением и осями координат.

После подстановки (1) – (3) в (4) и упрощения выражения получим:

$$\varepsilon_{\varphi,\psi} = \frac{(1+\nu)\sigma_{\varphi}}{E} \sin^2 \psi - \frac{\nu(\sigma_1 + \sigma_2)}{E}.$$
 (5)

Соответственно:

$$\frac{d_{\phi,\psi} - d_0}{d_0} = \frac{(1+\nu)\sigma_{\phi}}{E} \sin^2 \psi - \frac{\nu(\sigma_1 + \sigma_2)}{E}.$$
 (6)

Уравнение (6) является основным для рентгенографического метода измерения напряжений. При каждом значении  $\varphi$  оно представляет собой сечение эллипсоида деформации двухосного напряженного состояния. Уравнение показывает, что при двухосном напряженном состоянии величина деформации решетки независимо от выбора измеряемых плоскостей линейно зависит от sin<sup>2</sup> $\psi$  (рис. 3) и определяется величиной  $\sigma_{\varphi}$ и упругими константами *E* и v. Отрезок ординаты, отсекаемый прямой, определяется суммой главных напряжений и упругими константами независимо от плоскостей, выбранных для измерений.

Для измерения величины напряжений в плоскости образца в заданном направлении  $\sigma_{\omega}$  угловое положе-



**Рис. 3.** Зависимость  $\epsilon_{\phi,\psi}$  от  $\sin^2\psi$  под азимутом  $\phi$  в сечении эллипсоида деформации двухосного напряженного состояния поверхности

ние одной и той же рентгеновской линии измеряют, наклоняя образец относительно падающего на него луча на угол  $\psi$  (см. рис. 1).

#### Особенности метода

В пределах даже одного кристаллита кубические кристаллы упруго анизотропные и, например, для монокристаллов ряда сплавов на основе никеля отношение  $E_{111}/E_{100}$  примерно равно 2. Упругая анизотропия приводит к тому, что для различным образом ориентированных соседних кристаллов одинаковые тензоры напряжений и деформаций во внешнем базисе оказываются несовместимыми. Упругая аккомодация таких кристаллов друг к другу приводит к возникновению локальных микронапряжений. Величины E и v зависят, таким образом, от индексов отражения *hkl* и от взаимной ориентации кристаллов. При этом вводится понятие «рентгеновские упругие постоянные», которые в монокристаллах могут отличаться до 40% от справочных значений для материала образца.

Достоинствами рентгеновского метода определения остаточных напряжений являются:

 высокая локальность, определяемая «освещаемой» рентгеновским лучом площадкой и глубиной проникновения рентгеновского излучения, на которых происходит усреднение деформации;

– возможность определения напряжения на поверхности без знания межплоскостного расстояния исходного материала и в произвольном направлении  $\phi$  благодаря тому, что деформация определяется не параллельно поверхности, а под некоторым углом  $\psi = 0...60^\circ$  к нормали;

 возможность определения полного тензора деформаций в случае, когда известны точные значения периодов решетки в ненапряженном состоянии.

К недостаткам метода следует отнести снижение точности в случае:

 – существования неоднородности напряженного состояния по глубине слоя проникновения рентгеновских лучей;

– наличия ярко выраженной кристаллографической текстуры;

 использования изотропных упругих постоянных (*E*, *v*), так как в создании дифракционной картины участвуют лишь определенным образом ориентированные кристаллы, обладающие упругой анизотропией.

Для учета эффекта влияния анизотропии материала при съемке от определенных кристаллографических плоскостей (*hkl*) при вычислении остаточных напряжений необходимо вместо изотропных упругих постоянных E и v использовать рентгеновские постоянные  $E_{hkl}$  и v<sub>hkl</sub>, определяемые следующими способами:  используя методику съемки нагруженного образца по схеме четырехточечного нагружения;

 проводя механические испытания на растяжение и кручение монокристаллических образцов с ориентациями в основных кристаллографических направлениях;

 по методике с использованием измерений частот собственных колебаний образцов с различными кристаллографическими ориентациями;

 – по результатам определения скорости прохождения ультразвука в зависимости от кристаллографической ориентации;

 по результатам вычисления компонент матрицы упругих податливостей на основании испытаний образов с различной кристаллографической ориентацией на одноосное растяжение.

Последний способ является наиболее удобным с точки зрения проведения эксперимента или использования уже имеющихся данных, но имеет ряд ограничений. Его можно применять для материалов с кубической структурой при возможности изготовить образцы с заданной кристаллографической ориентацией, например, для жаропрочных сплавов на основе никеля, используемых при отливке лопаток турбины современных ГТД. Для других материалов необходимо использовать альтернативные методы.

### Расчет рентгеновских упругих постоянных для сплава ЖСЗ6

Рассмотрим методику определения рентгеновских упругих постоянных  $E_{hkl}$  и  $v_{hkl}$  для материалов с кубической решеткой на примере никелевого сплава ЖСЗ6. С точки зрения кристаллографии упругие свойства таких материалов однозначно описываются компонентами матрицы упругих податливостей  $S_{11}$ ,  $S_{12}$  и  $S_{44}$  [5, 6].

Для монокристаллов с кубической решеткой, которой обладают сплавы на основе никеля, рентгеновские упругие постоянные определяются соотношениями [7]:

$$E_{hkl} = 1/[S_{11} - 2(S_{11} - S_{12} - S_{44}/2)F];$$
(7)

$$\mathbf{v}_{hkl} = \frac{\left[S_{12} + (S_{11} - S_{12} - S_{44}/2)F\right]}{\left[S_{11} - 2(S_{11} - S_{12} - S_{44}/2)F\right]},\tag{8}$$

где  $F = (l^2m^2 + n^2m^2 + l^2n^2)$  – ориентационный фактор; l, m, n – направляющие косинусы между направлениями x, y, z и кубическими осями кристалла,  $S_{11}, S_{12}, S_{44}$  – компоненты матрицы упругих податливостей в кристаллографической системе координат.

Для расчета ориентационных зависимостей *E*<sub>hkl</sub> и v<sub>hkl</sub> необходимо знать направляющие косинусы осей

*х*, *у*, *z* относительно кристаллографической системы координат и зависимость обратных величин  $E_{hkl}$  от ориентационного фактора *F*.

Для раздельного определения  $S_{12}$  и  $S_{44}$  воспользуемся дополнительными соображениями. Физической оценкой анизотропии упругих свойств кубических кристаллов обычно служит выражение [8]:

$$A = 2(S_{11} - S_{12}) / S_{44}.$$
 (9)

В то же время, отношение модулей упругости кристаллов различной ориентации также может служить относительным показателем степени анизотропии. Очевидно, что между значением  $K = E_{111}/E_{100}$  и величиной *А* должна существовать зависимость. Такая зависимость, построенная по экспериментальным данным для чистого никеля [9], приведена на рис. 4. Предполагая, что для монокристаллов никелевого сплава ЖСЗ6 зависимость *A*(*K*) совпадает с зависимостьтью для чистого никеля, можно по величине *K* вычислить значение *A* и получить недостающее уравнение для определения *S*<sub>12</sub> и *S*<sub>44</sub>.



Рис. 4. График зависимости А(К) для чистого никеля [9]



Для расчетно-экспериментального определения величин упругих податливостей испытаны образцы из сплава ЖСЗ6 с монокристаллической структурой трех аксиальных ориентаций [001], [011], [111]. Испытание цилиндрических образцов проведено на одноосное растяжение с определением модуля упругости при температуре 20°С. В результате получена зависимость  $E_x^{-1}(F)$ . Линейная аппроксимация этой зависимости методом наименьших квадратов (рис. 5) позволила определить тангенс угла наклона прямой  $E_{hkl}^{-1}(F)$ , равный величине *В*. При этом *В* представляет собой комбинацию упругих податливостей:

$$B = 2(S_{11} - S_{12} - S_{44} / 2).$$
(10)

Из выражений (9), (10), учитывая  $S_{11} = 1 / E_{001}$ , можно определить значения  $S_{12}$  и  $S_{44}$ :

$$S_{44} = B / (A - 1);$$
  

$$S_{12} = S_{11} - A S_{44} / 2.$$

Подставляя значения упругих податливостей  $S_{11}$ ,  $S_{12}$  и  $S_{44}$  в формулы (7) и (8), можно определить значения упругих постоянных  $E_{hkl}$  и  $v_{hkl}$  для последующего расчета величины остаточных напряжений для соответствующих плоскостей (*hkl*), выбираемых исходя из условий съемки дифрактограмм, и длины волны используемого характеристического рентгеновского излучения.

Результаты расчета рентгеновских упругих постоянных для сплава ЖСЗ6 для линии съемки (420) приведены ниже.

$$\begin{split} &E_{001} = 124,6 \ \Gamma \Pi a; \ E_{011} = 226,5 \ \Gamma \Pi a; \ E_{111} = 310,7 \ \Gamma \Pi a; \\ &B = 1,44\cdot 10^{-5}; \ K = 2,493; \ A = 2,797; \ F = 0,16; \\ &S_{11} = 8,023\cdot 10^{-6}; \ S_{12} = -3,207\cdot 10^{-6}; \ S_{44} = 8,01\cdot 10^{-6}; \\ &E_{420} = 173 \ \Gamma \Pi a; \ v_{420} = 0,349; \\ &E_{420} / \ (1 + v_{420}) = 131 \ \Gamma \Pi a; \ (-1 / v_{420}) = -2,865. \end{split}$$

Расчеты проведены с учетом точности определения кристаллографической ориентации осей образцов в пределах 10°. Рассмотривались максимальные и минимальные значения модулей упругости. Сравнение результатов показало, что ошибка измерения конечной величины  $E_{420}$  составила ± 2 ГПа или 1,15%.

Отметим, что рассчитанные значения упругих податливостей  $S_{11}$ ,  $S_{12}$  и  $S_{44}$  не существенно отличаются от величин, полученных экспериментально для никелевых сплавов [10].

#### Заключение

Предложенный метод расчета рентгеновских упругих постоянных, основанный на экспериментальном определении модуля упругости образцов с монокристаллической структурой трех аксиальных ориентаций [001], [011], [111], может быть использован при определении величин остаточных напряжений по результатам рентгенографического исследования. Область применения метода – определение упругих податливостей и рентгеновских упругих постоянных для жаропрочных никелевых сплавов. На примере сплава ЖСЗ6 показана высокая степень достоверности результатов.

### Литература / References

- Биргер И.А. Остаточные напряжения. М.: МАШГИЗ, 1963. 230 с. Birger I.A. Ostatochnye napriazheniia. [Residual Stresses]. Moscow: MAShGIZ, 1963. 230 p.
- Европейский стандарт EN15305:2008(E) «Метод неразрушающего контроля. Определение остаточных напряжений с помощью рентгеноструктурного анализа». 2008. 88 с.
   Metod nerazrushaiushchego kontrolia. Opredelenie ostatochnykh napriazhenii s pomoshch'iu rentgenostrukturnogo analiza. [BRITISH STANDARD BS EN 15305:2008 Non-Destructive Testing. Test Method for Residual Stress Analysis by X-ray Diffraction], 2008. 88 p.
- Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ: учеб. пособие для вузов. 3-е перераб. и доп. издание. М.: МИСиС, 1994. 328 с. Gorelik S.S., Skakov Iu.A., Rastorguev L.N. Rentgenograficheskii i elektronno-opticheskii analiz. [X-ray and Electron-Optical Analysis]. University Manual. Moscow: MISiS, 1994. 328 p.
- 4. Баррет Ч.С. Структура металлов. М.: Металлургиздат, 1948. 677 с. Barret Ch.S. Struktura metallov [Structure of Metals]. Moscow: Metallurgisdat, 1948. 677 р.
- 5. Шалин Р.Е., Светлов И.Л., Качанов Е.Б. и др. Монокристаллы никелевых жаропрочных сплавов. М.: Машиностроение, 1997. 333 с.

Shalin R.E., Svetlov I.L., Kachanov E.B. et al. Monokristally nikelevykh zharoprochnykh splavov [Monocrystalls of Nickel Superalloys]. Moscow: Mashinostoenie, 1997. 333 p.

Кривко А.И. и др. Упругие свойства монокристаллов никелевых сплавов // Проблемы прочности, 1988.
 № 2. С. 68–75.
 Krivko A.I. et al. Uprugie svojstva monokristallov nikelevykh splavov [Elastic Properties of Monocrystal] Super-

Krivko A.I. et al. Uprugie svoistva monokristallov nikelevykh splavov [Elastic Properties of Monocrystall Superalloys]. Moscow: Problemy prochnosti, 1988. No. 2. P. 68–75.

- Най Дж. Физические свойства кристаллов. М.: Мир, 1967. 385 с.
   Nai Dzh. Fizicheskie svoistva kristallov [Physical Properties Crystals]. Moscow: Mir, 1967. 385 p.
- Келли А., Гровс Г. Кристаллография и дефекты в кристаллах. М.: Мир, 1974. 504 с. Kelli A., Grovs G. Kristallografiia i defekty v kristallakh [Crystallography and Crystal Defects]. Moscow: Mir, 1974. 504 р.
- 9. Simmons G., Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties // A handbook, 2nd. ed. London, M.I.S. Press, 1984. 1370 p.
- 10. Yang S.W. Elastic Constants of a Monocrystalline Nickel-base Superalloy // Metallurgical. Trans. 16A. 1985. Issue 4. P. 661–685.