Исследования влияния кристаллографической ориентации монокристаллического сплава на характеристики МЦУ

Селиванов А.Н., Бредихина Е.Н.

Центральный институт авиационного моторостроения им. П.И. Баранова, г. Москва e-mail: anselivanov@ciam.ru

Выполнены экспериментальные исследования характеристик малоцикловой усталости сплава с монокристаллической структурой ЖС32-ВИ. Построены кривые малоцикловой усталости для трех кристаллографических ориентаций: [001], [011], [111]. Определены константы тензора упругих податливостей для конкретной выборки образцов. Проанализирована зависимость между характеристиками малоцикловой усталости и упругими свойствами сплава. Предложен подход, позволяющий построить кривую малоцикловой усталости для произвольной кристаллографической ориентации.

Ключевые слова: малоцикловая усталость, анизотропия, никелевый монокристаллический сплав

Low-cycle fatigue behavior of single-crystal nickel-based superalloy dependence on crystallographic orientation

Selivanov A.N., Bredikhina E.N. CIAM, Moscow

Low-cycle fatigue experimental investigation of ZhS32-VI single-crystal superalloy have been carried out. Low-cycle fatigue curves are obtained for three crystallographic orientations: [001], [011] and [111]. The components of elastic stiffness tensor have been determined using Young's Modules obtained for specific sample of specimens. The dependence between characteristics of low-cycle fatigue and elastic properties of the alloy has been analyzed. An approach is proposed that makes it possible to construct a low-cycle fatigue curve for arbitrary crystallographic orientation.

Keywords: low-cycle fatigue, anisotropy, single-crystal nickel-based superalloy

Введение

Ужесточение требований к газотурбинным двигателям, в частности повышение температуры газа на входе в турбину, а также тенденция к увеличению ресурса двигателя обуславливают повышение требований к рабочим сплавам всех деталей, и в частности лопаток турбины высокого давления (ТВД).

При производстве рабочих лопаток ТВД наиболее часто используют никелевые монокристаллические жаропрочные сплавы. Такие сплавы обладают существенной анизотропией механических характеристик [1–10], в частности характеристик малоцикловой усталости (МЦУ). Анизотропия характеристик сплава приводит к увеличению объема экспериментальных исследований по сравнению с их объемом для изотропных сплавов. Применительно к монокристаллическим сплавам принято получать характеристики для трех кристаллографических направлений: [001], [011], [111].

Кроме того, для эффективного проектирования монокристаллических лопаток турбин авиационных ГТД требуются современные методики определения их долговечности, включающие как расчеты напряженно-деформированного состояния [11–13], так и определение механических характеристик сплава с учетом анизотропии.

В статье предложена аналитическая зависимость, позволяющая определить число циклов до разрушения, для произвольной кристаллографической ориентации (КГО). Для валидации подхода проводились испытания на МЦУ образцов из сплава ЖСЗ2-ВИ, вырезанных из заготовки в трех кристаллографических направлениях – [001], [011], [111], – при разной температуре.

Экспериментальные исследования малоцикловой усталости

Жаропрочные никелевые сплавы, к которым относится исследуемый в данной работе сплав ЖСЗ2-ВИ, – анизотропные, сложнолегированные, с гетерофазной структурой, главными элементами которой являются дисперсные (<0,5 мкм) частицы γ'-фазы на основе упорядоченного интерметаллического соединения Ni₃Al и сложнолегированный никелевый γ-твердый раствор [14–16].

Анизотропия механических характеристик обладает кубической симметрией, что не противоречит основному положению кристаллофизики – принципу Неймана [17]: симметрия любого физического свойства кристалла не может быть выше симметрии строения кристалла – и согласуется с кубической симметрией строения кристаллических решеток как γ-фазы, так и γ'-фазы. Обширные исследования, посвященные изучению упругих свойств, а также свойств пластичности, ползучести и усталости [1–10; 18], подтверждают данный принцип. Известно, что монокристаллы обладают тремя основными КГО: [001], [011] и [111] (рис. 1).

Можно выделить шесть КГО семейства [001], двенадцать КГО семейства [011] и восемь КГО семейства [111]. Кубическая симметрия свойств монокристалла означает, что механические характеристики сплава эквивалентны для направлений одного семейства и различаются для разных семейств.

Заготовки образцов для испытаний на МЦУ получены методом направленной кристаллизации по технологии отливки лопаток турбин с ориентацией оси отливки

в кристаллографическом направлении [001]. Режим термообработки заготовок соответствовал режиму, описанному в [19]. После получения заготовки из нее вырезали образцы в кристаллографических направлениях [001], [011] и [111].

Объекты испытаний – стандартные [20; 21] цилиндрические образцы, 60 штук, диаметром d = 4,37 мм, общей длиной $L_0 = 56$ мм, с длиной рабочей части L = 13 мм (рис. 2). Рабочую часть образцов полировали в продольном направлении, чтобы исключить появление концентраторов напряжений при растяжении. После изготовления рентгеновским методом контролировали однонаправленность оси образца и требуемого кристаллографического направления: [001], [011] или [111]. Отклонение не превышало 9° (10° – норма при изготовлении монокристаллических лопаток турбин).

Для проведения испытаний использовали динамическую сервогидравлическую машину с диапазоном рабочих нагрузок –100...+100 кН. Образцы испытывали при жестком цикле нагружения с контролем деформации с помощью высокотемпературного экстензометра. Государственный стандарт [20] допускает испытание на МЦУ как при жестком, так и при мягком цикле нагружения, однако в данной работе был выбран жесткий отнулевой цикл, что точнее соответствует нагружению в характерных зонах образования трещин МЦУ в охлаждаемых лопатках турбин при неравномерном нагреве. Более того, зарубежный стандарт [21] обязывает проводить испытания на МЦУ исключительно при контроле деформации, т.е. при жестком цикле нагружения.

Испытания проводили при коэффициенте асимметрии цикла R = 0 и температуре T = 700, 850 и 1000°С в соответствии с требованиями стандарта [20]. Частоту нагружения (f) для каждого испытания подбирали таким образом, чтобы скорость деформаций была постоянной величиной для образцов с одной КГО. Предварительно у каждого образца замеряли модуль упругости при комнатной температуре (E_{20}), а после нагрева — модуль упругости при температуре испытаний (E).

Результаты определения модуля упругости представлены на рис. 3, где *L* – ориентационный параметр, являющийся комбинацией направляющих косинусов между вектором *t*, который характеризует направление определения модуля упругости, и ортогональными осями монокристалла:

$$L = l_t^2 m_t^2 + m_t^2 n_t^2 + n_t^2 l_t^2,$$
(1)

где $l_t = \cos(\bar{t} \wedge X([001]));$ $m_t = \cos(\bar{t} \wedge Y([010]));$ $n_t = \cos(\bar{t} \wedge Z([100])) -$ направляющие косинусы. Значение ориентационного параметра меняется от нуля (если вектор \bar{t} совпадает с семейством КГО [001]) до 1/3 (если вектор \bar{t} совпадает с семейством КГО [111]).

Средняя величина модуля упругости при температуре T = 700°С составила 105 ГПа для КГО [001], 190 ГПа для КГО [011] и 267 ГПа для КГО [111]. Аналогичная закономерность прослеживается и для двух других температур. Сильная анизотропия упругих свойств при комнатной и повышенной температуре подтверждается теоретическим соотношением и экспериментальными исследованиями, проведенными другими авторами [3; 18; 22].

В результате испытаний на МЦУ было получено количество циклов до разрушения ($N_{\rm f}$) при фиксированном размахе упругопластических деформаций ($\Delta \varepsilon$). Образцы с КГО [001] обладают максимальными усталостными характеристиками, а образцы с КГО [111] – минимальными (рис. 4). Если умножить размах деформаций для определенной КГО на соответствующий модуль упругости и получить некоторый аналог напряжений (полная деформация состоит из упругой и пластической составляющих), то различие в построенных таким образом усталостных кривых будет значительно меньше, из чего можно сделать вывод о наличии некоторой зависимости между упругими свойствами монокристалла в различных направлениях и соответствующими усталостными характеристиками.

Экспериментальные результаты аппроксимировали с помощью степенной функции

$$N_{\rm f} = A(\Delta \varepsilon)^{-n}, \tag{2}$$

где $N_{\rm f}$ – число циклов до разрушения; A, n – константы кривой малоцикловой усталости; $\Delta \varepsilon$ – размах упругопластических деформаций. Результаты определения констант уравнения (2) представлены в табл. 1. Для каждой кривой МЦУ определен коэффициент детерминации (R^2), отражающий долю дисперсии случайной ошибки модели в дисперсии зависимой переменной. Иными словами, данный коэффициент отражает достоверность аппроксимации с использованием выбранной степенной зависимости: чем он ближе к единице, тем достовернее уравнение (2) аппроксимирует экспери-

Рис. 4. Результаты испытаний образцов на МЦУ: *a* – 700°С; *б* – 850°С; *в* – 1000°С

Табл. 1. Коэффициенты аппроксимации выражения (2), коэффициент детерминации, дисперсия и среднеквадратическое отклонение

<i>T</i> , °C	КГО	Α	n	R^2	D(lg(<i>N</i>))	СКО
700	[001]	6660	5,41	0,9907	0,0082	0,091
	[011]	629	4,88	0,9895	0,0066	0,081
	[111]	154	5,43	0,9858	0,013	0,11
850	[001]	8080	4,63	0,9666	0,017	0,13
	[011]	736	4,33	0,9905	0,0046	0,068
	[111]	224	4,22	0,9620	0,019	0,14
	[001]	5566	6,58	0,8882	0,079	0,28
1000	[011]	181	6,33	0,9934	0,0052	0,072
	[111]	11,5	7,25	0,9347	0,026	0,16

ментальные данные. Таким образом, степенная зависимость (2) с большой степенью достоверности описывает экспериментальные результаты. Определена также дисперсия D(lg(*N*)) логарифма экспериментального и расчетного числа циклов и среднеквадратическое отклонение (СКО) с использованием соотношений, описанных в нормативной документации.

В настоящее время в отрасли накоплено мало экспериментальных данных о характеристиках МЦУ в большом диапазоне температуры и размаха деформаций, в особенности для анизотропных монокристаллических сплавов. Часто, обладая данными для КГО [001], разработчик двигателя не имеет данных для КГО [011] и [111] при том, что число циклов до разрушения при одинаковом размахе деформаций для образцов с разной КГО может различаться в сотни тысяч раз. В таких условиях актуальной становится разработка математической модели, позволяющей учитывать анизотропию характеристик монокристаллических сплавов, имея в распоряжении лишь данные для КГО [001].

Разработка математической модели, учитывающей анизотропию механических характеристик материала

При анализе экспериментальных результатов была выявлена связь между анизотропией усталостных характеристик монокристаллического сплава и анизотропией упругих свойств. Поэтому для прогнозирования анизотропии усталостных характеристик важна идентификация анизотропных упругих свойств монокристаллических сплавов, в том числе в условиях нехватки экспериментальных данных.

Симметрия кристаллической решетки гетерофазного сплава ЖС32-ВИ обуславливает кубическую симметрию механических характеристик монокристаллов, т.е. можно различить три взаимно перпендикулярных направления, для которых свойства эквивалентны.

Обобщенный закон Гука [1] точно описывает НДС монокристаллов в пределах упругости:

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}; \quad \varepsilon_{ij} = S_{ijkl} \sigma_{kl}, \tag{3}$$

где σ_{ij} , ε_{ij} – тензоры напряжений и деформаций; C_{ijkl} , S_{ijkl} – тензоры четвертого ранга упругих жесткостей и податливостей.

Упругие свойства монокристаллических никелевых сплавов с кубической симметрией свойств однозначно описываются тремя независимыми константами тензора упругих жесткостей, *C*₁₁, *C*₁₂, *C*₄₄ (в изотропном случае матрица упругих жесткостей формируется двумя независимыми константами *E*, µ), или податливостей, *S*₁₁, *S*₁₂, *S*₄₄. В системе координат, связанной с кристаллографическими осями [001], [010], [100] и, следовательно, с элементарной ячейкой кристаллической решетки, тензор упругих податливостей принимает вид

$$[S] = \begin{pmatrix} S_{11} & S_{12} & S_{12} & 0 & 0 & 0 \\ S_{12} & S_{11} & S_{12} & 0 & 0 & 0 \\ S_{12} & S_{12} & S_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{44} \end{pmatrix}.$$
(4)

Тензоры упругих жесткостей и упругих податливостей являются взаимно обратными:

$$[C] = [S]^{-1}.$$
 (5)

Константы S_{11} , S_{12} можно определить из стандартных тестов на растяжение с замерами продольной и поперечной деформации. Для изотропного материала таких испытаний было бы достаточно, так как оставшаяся упругая константа S_{44} не является независимой и вычисляется с использованием модуля упругости и коэффициента поперечной деформации. Чтобы определить константу S_{44} для монокристаллического материала, необходимы дополнительные испытания.

Для определения модуля упругости в произвольном кристаллографическом направлении \overline{t} используется зависимость

$$E_{[t]} = \frac{1}{S_{11} - 2(S_{11} - S_{12} - \frac{S_{44}}{2})L}.$$
(6)

Зависимость модуля упругости материала от направления может быть представлена в виде указательной поверхности (рис. 5).

Для определения модуля упругости в произвольном кристаллографическом направлении с использованием выражения (6) необходимо знать компоненты тензора упругих податливостей. Для удобства введем обозначение

$$S = S_{11} - S_{12} - \frac{S_{44}}{2}.$$
 (7)

Для КГО [001] выражение (6) при L = 0 примет вид

$$E_{[001]} = \frac{1}{S_{11}}.$$
(8)

С учетом (7) для КГО [011] выражение (6) при L = 0,25 примет вид

$$E_{[011]} = \frac{1}{S_{11} - 2SL} = \frac{1}{S_{11} - S/2}.$$
(9)

Из выражения (7) следует, что S зависит от трех констант в системе координат, связанной с кристаллографическими осями [001], [010], [100]. S_{11} определяется из выражения (8) при испытании стандартных цилиндрических образцов на растяжение, в которых ось

Рис. 5. Указательная поверхность модуля упругости монокристаллического сплава

образца совпадает с КГО [001]. Константа S₁₂ может определяться по результатам замера поперечной деформации при растяжении плоского монокристаллического образца, у которого осъ совпадает с КГО [001], а нормаль к плоскости – с одной из кристаллографических осей [010] или [100]. Стоит отметить, что с достаточно большой точностью можно принять коэффициент поперечной деформации в системе координат, связанной с кристаллографическими осями [001], [010], [100], равным 0,3 для жаропрочных монокристаллических сплавов на никелевой основе. Третьей константой является S₄₄, которую обычно определяют в ультразвуковых испытаниях при замере скорости распространения поперечных волн [23]. Однако вместо таких испытаний можно проводить испытания на растяжение образцов с КГО отличными от семейства [001], например с КГО [111]. Используя выражения (7) и (9), можно получить

$$S_{44} = 2 \left(S_{11} - S_{12} - \frac{3(E_{[111]} - E_{[001]})}{2E_{[001]}E_{[111]}} \right).$$
(10)

Таким образом, получены все три независимые компоненты тензора упругих податливостей и полностью определены упругие свойства данного сплава. Проведено сопоставление упругих свойств с использованием экспериментальных данных для КГО [011], применительно к которой модуль упругости не был задействован в вычислении компонент тензора упругих податливостей. Получено хорошее согласование теоретических (рассчитанных с помощью выражения (6)) и экспериментальных данных (рис. 6).

Результаты аппроксимации экспериментальных данных о МЦУ с помощью выражения (2) приведены в табл. 2. При аппроксимации использовали коэффициенты из табл. 1.

Определена интенсивность размаха упругопластических деформаций (табл. 3):

$$\Delta \varepsilon_{\rm i} = \Delta \varepsilon - \Delta \varepsilon_0, \tag{11}$$

где $\Delta \varepsilon_0 - {\rm paзмax}$ объемной деформации, определяемый как

Рис. 6. Сравнение теоретических и экспериментальных данных при определении модулей упругости

Табл. 2. Результаты аппроксимации размаха деформаций

<i>T</i> , °C	700		850			1000				
КГО	[001]	[011]	[111]	[001]	[011]	[111]	[001]	[011]	[111]	
N _f , циклы	Δε, %									
1024	1,41	0,91	0,71	1,56	0,92	0,70	1,26	0,76	0,53	
3125	1,15	0,72	0,58	1,23	0,72	0,54	1,08	0,64	0,46	
7776	0,97	0,60	0,49	1,01	0,58	0,43	0,94	0,55	0,41	
16 807	0,84	0,51	0,42	0,85	0,49	0,36	0,84	0,49	0,37	
32 768	0,75	0,44	0,37	0,74	0,42	0,31	0,77	0,44	0,34	
59 049	0,67	0,39	0,34	0,65	0,37	0,27	0,70	0,40	0,31	
100 000	0,61	0,35	0,30	0,58	0,33	0,24	0,65	0,37	0,29	

Табл. 3.	Результаты аппроксимации интенсивности
размаха	деформаций

<i>T</i> , °C	700		850			1000			
КГО	[001]	[011]	[111]	[001]	[011]	[111]	[001]	[011]	[111]
N _f , циклы	$\Delta \varepsilon_{i}, \%$								
1024	1,23	0,69	0,47	1,35	0,70	0,46	1,10	0,58	0,35
3125	1,00	0,55	0,39	1,06	0,54	0,35	0,93	0,48	0,30
7776	0,84	0,45	0,33	0,87	0,44	0,29	0,82	0,42	0,27
16 807	0,73	0,38	0,28	0,74	0,37	0,24	0,73	0,37	0,24
32 768	0,65	0,33	0,25	0,64	0,32	0,20	0,66	0,33	0,22
59 049	0,58	0,30	0,22	0,56	0,28	0,18	0,61	0,30	0,21
100 000	0,53	0,26	0,20	0,50	0,25	0,16	0,56	0,28	0,19

$$\Delta \varepsilon_0 = \frac{\Delta \varepsilon (1 - \mu_{21} - \mu_{31})}{3};$$
(12)

µ₂₁ – коэффициент поперечной деформации в первом направлении ортогональном направлению растягивающей нагрузки; µ₃₁ – коэффициент поперечной деформации во втором направлении ортогональном направлению растягивающей нагрузки. Поперечные направления совпадают с одной из осей с КГО семейства [001]. Определено среднее арифметическое размаха деформаций и интенсивности размаха деформаций (табл. 4):

$$\Delta \varepsilon_{\rm cp} = \frac{\Delta \varepsilon + \Delta \varepsilon_{\rm i}}{2}.$$
 (13)

Взята средняя интегральная оценка величин для каждого значения температуры и КГО (табл. 5):

$$\Delta \varepsilon_{\rm cp}^* = \frac{1}{N_2 - N_1} \int_{N_1}^{N_2} \varepsilon(N) dN \,. \tag{14}$$

Затем данные величины нормированы относительно КГО [001]. Определены диагональные компоненты тензора упругих податливостей в направлении, совпадающем с КГО образца:

$$S_{nn} = S_{11} - 2 \left(S_{11} - S_{12} - \frac{S_{44}}{2} \right) L \tag{15}$$

и также нормированы относительно КГО [001].

Отмечена связь между зависимостью средней деформации от КГО, определенной с помощью выражения (14), и компонентами тензора упругих податливостей, определенных с использованием выражения (15). Различие сравниваемых нормированных величин не превысило 9%.

Табл. 4. Среднее арифметическое размаха деформаций и интенсивности размаха деформаций

T, °C	700		850			1000			
КГО	[001]	[011]	[111]	[001]	[011]	[111]	[001]	[011]	[111]
N _f , циклы	$\Delta \varepsilon_{\rm cp}, \%$								
1024	1,32	0,80	0,59	1,46	0,81	0,58	1,18	0,67	0,44
3125	1,07	0,63	0,48	1,15	0,63	0,45	1,00	0,56	0,38
7776	0,91	0,52	0,41	0,94	0,51	0,36	0,88	0,48	0,34
16 807	0,79	0,45	0,35	0,80	0,43	0,30	0,79	0,43	0,31
32 768	0,70	0,39	0,31	0,69	0,37	0,26	0,71	0,39	0,28
59 049	0,62	0,34	0,28	0,61	0,32	0,22	0,66	0,35	0,26
100 000	0,57	0,31	0,25	0,54	0,29	0,20	0,61	0,32	0,24

Табл. 5. Результаты сопоставления зависимости упругих свойств и размаха деформаций от КГО

T, ℃	700		850			1000			
КГО	[001]	[011]	[111]	[001]	[011]	[111]	[001]	[011]	[111]
$\frac{\Delta \boldsymbol{\epsilon}_{cp}^{*}}{\Delta \boldsymbol{\epsilon}_{cp[001]}^{*}}$	1,00	0,56	0,44	1,00	0,53	0,37	1,00	0,54	0,39
$\frac{S_{nn}}{S_{nn[001]}}$	1,00	0,55	0,41	1,00	0,55	0,40	1,00	0,55	0,40
Разли- чие, %	0,00	-0,86	-8,58	0,00	2,34	7,75	0,00	1,58	3,61

Выражение (13) можно записать в следующем виде:

$$\Delta \varepsilon_{\rm cp} = \frac{\Delta \varepsilon}{6} (5 + \mu_{21} + \mu_{31}). \tag{16}$$

Наклон кривых МЦУ, аппроксимируемых с использованием выражения (2), зависит от показателя степени *n*. Анализируя экспериментальные результаты, представленные на рис. 4, можно прийти к выводу, что данная величина для образцов с разной КГО, испытанных при одной температуре, различается несильно (кривые в логарифмических координатах имеют почти один и тот же наклон). Значительно различается константа *A* выражения (2). Таким образом, выражение для определения числа циклов до разрушения для конкретной КГО (2) преобразуется с учетом ранее отмеченных экспериментальных зависимостей в выражение для определения числа циклов до разрушения для произвольной КГО:

$$N_{f[t]} = A_{[001]} \left[\frac{(5 + \mu_{21[001]} + \mu_{31[001]})E_{[001]}}{(5 + \mu_{21[t]} + \mu_{31[t]})E_{[t]}} \right]^{n_{1001]}} \Delta \varepsilon^{-n_{1001]}}, \quad (17)$$

где $A_{[001]}$, $n_{[001]}$ — первая и вторая константы кривой МЦУ, аппроксимирующей экспериментальные результаты, полученные на образцах с КГО [001]; $\mu_{21[001]}$, $\mu_{31[001]}$ — коэффициенты поперечной деформации в системе координат, связанной с кристаллографичес-кими осями семейства [001] в первом и втором направлениях ортогональных направлению растягивающей нагрузки; $\mu_{21[t]}$, $\mu_{31[t]}$ — коэффициенты поперечной деформации в первом и втором направлениях ортогональных направлении в первом и втором направлениях ортогональных направлению растягивающей нагрузки в системе координат, где данное направление совпадает с вектором \overline{t} ; $E_{[001]}$ — модуль упругости в кристаллографическом направлении [001]; $E_{[t]}$ — модуль упругости в кристаллографическом направлении, совпадающем с вектором \overline{t} .

Из выражения (17) следует: чтобы построить кривую МЦУ для конкретной температуры применительно к произвольному кристаллографическому направлению, необходимо знать коэффициенты тензора упругих жесткостей или податливостей, которые с большой степенью достоверности определяются в испытаниях на растяжение образцов с КГО [001] и [111], а также константы кривой МЦУ для КГО [001].

Расчетные результаты, полученные с использованием зависимости (17), сопоставлены с имеющимися экспериментальными данными для КГО [011] и [111] (рис. 7).

Статистические оценки, приведенные в табл. 6, и сопоставление данных на рис. 8 говорят о хорошем соответствии результатов расчета, полученных с использованием выражения (17), экспериментальным данным.

Рис. 7. Сопоставление предложенной зависимости с экспериментальными данными для КГО [011] и [111]: *а* – 700°С; *б* – 850°С; *в* – 1000°С

Табл. 6. Статистическая оценка	расчетных
и экспериментальных данных	

КГО	R^2	D(lg(N))	СКО	
[001]	0,9895	0,039	0,20	
[111]	0,9858	0,091	0,30	
[001]	0,9905	0,0077	0,088	
[111]	0,9620	0,043	0,21	
[001]	0,9934	0,0068	0,082	
[111]	0,9347	0,036	0,19	
	КГО [001] [111] [001] [111] [001] [111]	KΓO R ² [001] 0,9895 [111] 0,9858 [001] 0,9905 [111] 0,9620 [001] 0,9934 [111] 0,9347	KΓO R ² D(lg(N)) [001] 0,9895 0,039 [111] 0,9858 0,091 [001] 0,9905 0,0077 [111] 0,9620 0,043 [001] 0,9934 0,0068 [111] 0,9347 0,036	

Рис. 8. Сравнение расчетных и экспериментальных данных (штриховые линии – границы погрешности расчета 100%): *a* – 700°C; *б* – 850°C; *в* – 1000°C

Заключение

Проведены экспериментальные исследования по определению числа циклов до разрушения стандартных цилиндрических образцов из монокристаллического сплава ЖС32-ВИ для кристаллографических ориентаций [001], [011], [111] при жестком отнулевом цикле нагружения и температуре 700, 850 и 1000°С.

В результате анализа экспериментальных данных выявлена высокая анизотропия усталостных характеристик сплава, выраженная в разном количестве циклов до разрушения при одинаковом размахе деформаций образцов с разной кристаллографической ориентацией. Между образцами с кристаллографическими ориентациями [001] и [011] различие может достигать 10 раз, а между образцами с кристаллографическими ориентациями [001] и [111] может составлять и несколько десятков раз.

Предложена зависимость, позволяющая строить кривые малоцикловой усталости монокристаллических сплавов для произвольной кристаллографической ориентации, опираясь на результаты, полученные для ориентации [001], а также упругие свойства сплава при заданной температуре.

Литература

- 1. Монокристаллы никелевых жаропрочных сплавов / Р.Е. Шалин, И.Л. Светлов, Е.Б. Качанов, В.Н. Толорайя, О.С. Гаврилин. М. : Машиностроение, 1997. 336 с.
- 2. Каблов Е.Н., Голубовский Е.Р. Жаропрочность никелевых сплавов. М. : Машиностроение, 1998. 464 с.
- 3. Механические свойства монокристаллического никелевого жаропрочного сплава, содержащего рений и рутений / Светлов И.Л., Петрушин Н.В. и др. // Деформация и разрушение материалов. 2008. № 11. С. 26–35.
- Голубовский Е.Р., Светлов И.Л., Епишин А.И. Влияние кристаллографической ориентации на прочностные характеристики монокристаллов никелевого жаропрочного сплава // Научные труды / МАТИ. 2005. Вып. 8 (80). С. 22–27.
- Голубовский Е.Р., Жуков Н.Д. Экспериментальное исследование многоцикловой усталости монокристаллов жаропрочных никелевых сплавов // Вопросы авиационной науки и техники. Сер.: Авиационное двигателестроение / ЦИАМ. 2006. Вып. 4 (1327): Проблемы конструкционной прочности современных ГТД : сборник статей под ред. А.Н. Петухова. С. 62–70.
- 6. Dalal R.P., Thomas C.R., Dardi L.E. The effect of crystallographic orientation on the physical and mechanical properties of an investment cast single crystal nickel-base superalloy // Superalloys 1984 : proceedings of the Fifth International Symposium on Superalloys, Champion, PA, October 7–11, 1984 / ed. M. Gell et al. Warrendale, PA, USA : The Metallurgical Society of AIME, 1984. P. 185–197.
- Gabb T.P., Welsch G. The high temperature deformation in cyclic loading of a single crystal nickel-base superalloy // Acta Metallurgica. 1989. Vol. 37, no. 9. P. 2507–2516.
- Gabb T.P., Gayda J., Miner R.V. Orientation and temperature dependence of some mechanical properties of the single crystal nickel-base superalloy René N4: Part II. Low cycle fatigue behavior // Metallurgical Transactions A. 1986. Vol. 17. P. 497–505.
- Mughrabi H., Kraft S., Ott M. Specific aspects of isothermal and anisothermal fatigue of the monocrystalline nickelbase superalloy CMSX-6 // Superalloys 1996 : proceedings of the Eighth International Symposium on Superalloys, Seven Springs Mountain Resort, Champion, PA, USA, 22–26 September 1996 / ed. R.D. Kissinger et al. Pittsburgh, PA, USA : Minerals, Metals & Materials Society, 1996. P. 335–344.
- 10. MacLachlan D.W., Knowles D.M. Fatigue behaviour and lifing of two single crystal superalloys // Fatigue and Fracture of Engineering Materials and Structures. 2001. Vol. 24, no. 8. P. 503–521.
- 11. Moss S.J., Webster G.A., Fleury E. Creep deformation and crack growth behavior of a single crystal nickel-base superalloy // Metallurgical and Materials Transactions A. 1996. Vol. 27, no. 4. P. 829–837.
- 12. Development of the rhenium-containing superalloys CMSX-4 and CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines / K. Harris, G.L. Erickson, S.L. Sikkenga, W.D. Brentnall, J.M. Aurrecoechea and K.G. Kubarych // Superalloys 1992 : proceedings of the Seventh International Symposium on Superalloys ... held September 20–24, 1992 at the Seven Springs Mountain Resort, Champion, PA / ed. S.D. Antolovich et al. Warrendale, PA, USA : The Minerals, Metals and Materials Society, 1992. P. 297–306.
- Microstructural degradation of CMSX-4: kinetics and effect on mechanical properties / A. Epishin, T. Link, M. Nazmy, M. Staubli, H. Klingelhöffer, G. Nolze // Superalloys 2008 : proceedings of the Eleventh International Symposium on Superalloys ... held September 14–18, 2008 at the Seven Springs Mountain Resort, Champion, Pennsylvania, USA / ed. R.C. Reed et al. Champion, PA, USA : The Minerals, Metals and Materials Society, 2008. P. 725–731.

- 14. О фазовых и структурных превращениях в жаропрочных ренийсодержащих сплавах монокристаллического строения / Н.В. Петрушин, Е.С. Елютин, Е.Б. Чабина, О.Б. Тимофеева // Литейное производство. 2008. № 7. С. 1–7.
- 15. Структура и фазовый состав монокристаллического сплава ВЖМ-4 с газоциркуляционным защитным покрытием / В.П. Кузнецов, В.П. Лесников, И.П. Конакова, Н.В. Петрушин, С.А. Мубояджян // Металловедение и термическая обработка металлов. 2011. № 3 (669). С. 28–32.
- 16. Bhadeshia H.K.D.H. Nickel based superalloys / Materials Science & Metallurgy, University of Cambridge // University of Cambridge : website. URL: https://www.phase-trans.msm.cam.ac.uk/2003/Superalloys/superalloys.html (accessed: 01.11.2022).
- 17. Neumann F.E. Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers : gehalten an der Universität Künigsberg. Leipzig : druck und verlag von B.G. Teubner, 1885. XIV, 374 p.
- 18. Elastic properties and determination of elastic constants of nickel-base superalloys by a free-free beam technique / W. Hermann, H.G. Sockel, J. Han, and A. Bertram // Superalloys 1996 : proceedings of the Eighth International Symposium on Superalloys, Seven Springs Mountain Resort, Champion, PA, USA, 22–26 September 1996 / ed. R.D. Kissinger et al. Pittsburgh, PA, USA : Minerals, Metals & Materials Society, 1996. P. 229–238.
- 19. Некоторые особенности формирования монокристаллических отливок на примере безуглеродистого сплава ВЖМ-5 / В.Н. Толорайя, А.Н. Петухов, М.Е. Колотников, С.В. Харьковский, Г.А Остроухова // Вісник двигунобудування. 2011. № 2. С. 234–238.
- ГОСТ 25.502-79. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Методы испытаний на усталость. М. : Издательство стандартов, 1986. 25 с. Издание с Изменением № 1, утвержденным в декабре 1985 г. (ИУС 3-86).
- 21. ASTM E606-04. Standard practice for strain-controlled fatigue testing. 2004. 16 p.
- 22. Соловьев А.Е., Голынец С.А., Хвацкий К.К. Анизотропия характеристик упругости при растяжении монокристаллических жаропрочных никелевых сплавов // Труды ВИАМ : электрон. науч.-техн. журн. 2017. № 10 (58). С. 112–118. Ст. 12. URL: http://www.viam-works.ru (дата обращения: 01.11.2022). DOI 10.18577/2307-6046-2017-0-10-12-12.
- 23. Markham M.F. Measurement of elastic constants by the ultrasonic pulse method // British Journal of Applied Physics. 1957. Vol. 8, no. S6. P. S56–S63.

References

- 1. Shalin R.E., Svetlov I.L. et al. Monokristally nikelevykh zharoprochnykh splavov [Single crystals of heat-resistant nickel alloys]. Moscow: Mashinostroenie [Mechanical Engineering], 1997. 336 p.
- 2. Kablov E.N., Golubovskii E.R. Zharoprochnost' nikelevykh splavov [Heat resistance of nickel alloys]. Moscow: Mashinostroenie [Mechanical Engineering], 1998. 464 p.
- 3. Svetlov I.L., Petrushin N.V., Golubovskii E.R., Khvatskii K.K., Shchegolev D.V., Elyutin E.S. Mekhanicheskie svoistva monokristallicheskogo nikelevogo zharoprochnogo splava, soderzhashchego renii i rutenii [Mechanical properties of a single crystal of heat-resistant nickel alloy containing rhenium and ruthenium]. Deformatsiya i Razrushenie materialov [Deformation and Fracture of Materials]. 2008. No. 11. P. 26–35.
- 4. Golubovskii E.R., Svetlov I.L., Epishin A.I. Vliianie kristallograficheskoi orientatsii na prochnostnye kharakteristiki monokristallov nikelevogo zharoprochnogo splava [Influence of crystallographic orientation on strength characteristics of single crystals of heat-resistant nickel alloy]. Nauchnye Trudy [Proceedings]. MATI. 2005. Issue 8 (80). P. 22–27.
- 5. Golubovskii E.R., Zhukov N.D. Eksperimental'noe issledovanie mnogotsiklovoi ustalosti monokristallov zharoprochnykh nikelevykh splavov [Experimental investigation of high-cycle fatigue of single crystals of heat-resistant nickel alloys]. Voprosy aviatsionnoi nauki i tekhniki [Issues of aviation science and technology]. Series: Aviatsionnoe dvigatelestroenie [Aero-Engine Building]. CIAM. 2006. Issue 4 (1327): Problemy konstruktsionnoi prochnosti sovremennykh GTD [Problems of structural strength of modern GTE]. Collection of articles edited by A.N. Petukhov. P. 62–70.
- 6. Dalal R.P., Thomas C.R., Dardi L.E. The effect of crystallographic orientation on the physical and mechanical properties of an investment cast single crystal nickel-base superalloy // Superalloys 1984 : proceedings of the Fifth International Symposium on Superalloys, Champion, PA, October 7–11, 1984 / ed. M. Gell et al. Warrendale, PA, USA : The Metallurgical Society of AIME, 1984. P. 185–197.
- 7. Gabb T.P., Welsch G. The high temperature deformation in cyclic loading of a single crystal nickel-base superalloy // Acta Metallurgica. 1989. Vol. 37, no. 9. P. 2507–2516.

- Gabb T.P., Gayda J., Miner R.V. Orientation and temperature dependence of some mechanical properties of the single crystal nickel-base superalloy René N4: Part II. Low cycle fatigue behavior // Metallurgical Transactions A. 1986. Vol. 17. P. 497–505.
- 9. Mughrabi H., Kraft S., Ott M. Specific aspects of isothermal and anisothermal fatigue of the monocrystalline nickelbase superalloy CMSX-6 // Superalloys 1996 : proceedings of the Eighth International Symposium on Superalloys, Seven Springs Mountain Resort, Champion, PA, USA, 22–26 September 1996 / ed. R.D. Kissinger et al. Pittsburgh, PA, USA : Minerals, Metals & Materials Society, 1996. P. 335–344.
- 10. MacLachlan D.W., Knowles D.M. Fatigue behaviour and lifing of two single crystal superalloys // Fatigue and Fracture of Engineering Materials and Structures. 2001. Vol. 24, no. 8. P. 503–521.
- 11. Moss S.J., Webster G.A., Fleury E. Creep deformation and crack growth behavior of a single crystal nickel-base superalloy // Metallurgical and Materials Transactions A. 1996. Vol. 27, no. 4. P. 829–837.
- 12. Development of the rhenium-containing superalloys CMSX-4 and CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines / K. Harris, G.L. Erickson, S.L. Sikkenga, W.D. Brentnall, J.M. Aurrecoechea and K.G. Kubarych // Superalloys 1992 : proceedings of the Seventh International Symposium on Superalloys ... held September 20–24, 1992 at the Seven Springs Mountain Resort, Champion, PA / ed. S.D. Antolovich et al. Warrendale, PA, USA : The Minerals, Metals and Materials Society, 1992. P. 297–306.
- Microstructural degradation of CMSX-4: kinetics and effect on mechanical properties / A. Epishin, T. Link, M. Nazmy, M. Staubli, H. Klingelhöffer, G. Nolze // Superalloys 2008 : proceedings of the Eleventh International Symposium on Superalloys ... held September 14–18, 2008 at the Seven Springs Mountain Resort, Champion, Pennsylvania, USA / ed. R.C. Reed et al. Champion, PA, USA : The Minerals, Metals and Materials Society, 2008. P. 725–731.
- 14. Petrushin N.V. et al. Phase and structural transformations in rhenium-containing high-temperature alloys. Liteinoye proizvodstvo [Foundry. Technologies and Equipment]. 2008. No. 7. P. 1–7.
- Kuznetsov V.P., Lesnikov V.P., Konakova I.P., Petrushin N.V., Muboyadzhyan S.A. Structure and phase composition of single-crystal alloy VZhM-4 with gas-circulation protective coating. Metal Science and Heat Treatment. 2011. Vol. 53, no. 3-4. P. 131–135.
- 16. Bhadeshia H.K.D.H. Nickel based superalloys / Materials Science & Metallurgy, University of Cambridge // University of Cambridge : website. URL: https://www.phase-trans.msm.cam.ac.uk/2003/Superalloys/superalloys.html (accessed: 01.11.2022).
- 17. Neumann F.E. Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers : gehalten an der Universität Künigsberg. Leipzig : druck und verlag von B.G. Teubner, 1885. XIV, 374 S.
- 18. Elastic properties and determination of elastic constants of nickel-base superalloys by a free-free beam technique / W. Hermann, H.G. Sockel, J. Han, and A. Bertram // Superalloys 1996 : proceedings of the Eighth International Symposium on Superalloys, Seven Springs Mountain Resort, Champion, PA, USA, 22–26 September 1996 / ed. R.D. Kissinger et al. Pittsburgh, PA, USA : Minerals, Metals & Materials Society, 1996. P. 229–238.
- 19. Talaraija V.N., Petukhov A.N., Kolotnikov M.E., Kharkjvski S.V., Ostrouhova G.A. Some features of formation of single cristal castings by the example of carbon-free alloy VJzM-5. Visnik dvigunobuduvannia [Herald of Aeroengine-building]. 2011. No. 2. P. 234–238.
- GOST 25.502-79. Raschety i ispytaniia na prochnost' v mashinostroenii. Metody mekhanicheskikh ispytanii metallov. Metody ispytanii na ustalost' [Strength analysis and testing in machine building. Methods of metals mechanical testing. Methods of fatigue testing]. Moscow: Publishing house of standards, 1986. With amendment no. 1, approved in December 1985 (IUS 3-86).
- 21. ASTM E606-04. Standard practice for strain-controlled fatigue testing. 2004. 16 p.
- Solovyov A.E., Golinets S.A., Khvatskiy K.K. Anisotropy of elastic properties tensile of single crystals in nickel-based superalloys. Trudy VIAM: elektronnyi nauchno-tekhnicheskii zhurnal. [Proceedings of VIAM : scientific and technical on-line journal]. 2017. No. 10 (58). P. 112–118. Art. 12. URL: http://www.viam-works.ru (accessed: 01.11.2022). DOI 10.18577/2307-6046-2017-0-10-12-12.
- 23. Markham M.F. Measurement of elastic constants by the ultrasonic pulse method // British Journal of Applied Physics. 1957. Vol. 8, no. S6. P. S56–S63.

Материалы получены редакцией 26.10.2022